

t - Lifes) dou cas (as , and)

and the second and th

deficient of the management

LIGHT TRANSPORT

Advanced Computer Graphics 2017

Erik Sintorn sol angle to area, we must

only express dur in terms of dA

Before we start:

- Remember to choose a subject for your presentation soon.
- And your project.
- Student representatives:
 - JOHAN BACKMAN
 - KEVIN BJÖRKLUND
 - JONAS HULTÉN
 - HAMPUS LIDIN
 - VICTOR OLAUSSON
 - Come for a quick talk with me during recess.
- Muddy Cards!

johback@student.chalmers.se kevinb@student.chalmers.se jonashu@student.chalmers.se lidin@student.chalmers.se vicola@student.chalmers.se

Light Transport Simulation

- Rendering an image is a matter of "simulating" how light propagates through a virtual scene and lands on a virtual camera film.
- Many algorithms exist, and the best one depends on many factors.
- For a long time, *Photon Mapping* and *Irradiance Caching* were extremely popular.
 - Trade correctness for speed.
 - Will cover these only very briefly.

to a later) de cos (es , con

1) 3Q.

Photon Mapping

2 of the microfacet

Irradiance Caching

Pinhole Camera

Interrection

CHALMER

Path Tracing

Path tracing is an *algorithm* for rendering images.

- Introduced by James Kajiya in 1986 as a numerical solution to the Rendering Equation.
- The algorithm is *convergent* and *unbiased*.
- Has long been considered too noisy/slow to be used in industry.
- Today, almost all commercial renderers use some form of unbiased pathtracing (at least optionally).
 - Pixar (for example) only switched completely very recently.
- Why the sudden popularity?

Mental Ray (photon mapping) 32s

iRay (path tracing) 32s

СΗΔ

FRS

Mental Ray (photon mapping) 2m8s

iRay (path tracing) 2m8s

MERS

CHAL

CHALMERS

Mental Ray (photon mapping) 2m8s

iRay (path tracing) 2m8s

iRay (path tracing) ~1h

Mental Ray 15m, 100M Photons, FG 1.0

iRay (path tracing) 15m

- Immediate response Much easier to parallelize

CHALMERS

Where does an image come from?

Where does an image come from?

Where does an image come from?

Where does an image come from?

Where does an image come from?

1/25/2017

Where does an image come from?

Where does an image come from?

 $L_o(\boldsymbol{p},\omega) = L_e(\boldsymbol{p},\omega) + \int_{\Omega} f(\boldsymbol{p},\omega,\omega') L_i(\boldsymbol{p},\omega') \cos(\boldsymbol{n},\omega') d\omega'$

Numerical Integration

4		$F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(X_i)}{p(X_i)} = \frac{1}{1} 1$.8
		Convergent:]
		As N approaches infinity, F_N approaches $\int_0^X f(x) dx$	
		$f(X_1) = 1.8$	
		Regardless of N, the <i>expected value</i> $E[F_N] = \int_0^X f(x) dx$. Which means that just averaging the results of an infinite number of bad approximations will yield the correct value!	
0	Ar	$ea = \int_0^X f(x) dx$	
(D	$X_1 = 0.27$	1.0

37

Monte Carlo Integration

 $L_o(\boldsymbol{p},\omega) = E[L_e(\boldsymbol{p},\omega) + 2\pi f(\boldsymbol{p},\omega,\omega_i)L_i(\boldsymbol{p},\omega_i)\cos(\boldsymbol{n},\omega_i)]$

 $L_o(\mathbf{p}, \boldsymbol{\omega}) \approx L_e(\mathbf{p}, \boldsymbol{\omega}) + 2\pi f(\mathbf{p}, \boldsymbol{\omega}, \omega_i) L_i(\mathbf{p}, \omega_i) \cos(\mathbf{n}, \omega_i)$

 $L_o(\mathbf{p},\omega) \approx L_e(\mathbf{p},\omega) + 2\pi f(\mathbf{p},\omega,\omega_i)L_i(\mathbf{p},\omega_i)\cos(\mathbf{n},\omega_i)$

 $L_o(\mathbf{p},\omega) \approx 0 + 2\pi f(\mathbf{p},\omega,\omega_i) L_i(\mathbf{p},\omega_i) \cos(\mathbf{n},\omega_i)$

 $L_o(\mathbf{p},\omega) \approx \mathbf{0} + 2\pi f(\mathbf{p},\omega,\omega_i) L_o(\mathbf{p}',-\omega_i) \cos(\mathbf{n},\omega_i)$

 $L_o(\mathbf{p},\omega) \approx 0 + 2\pi f(\mathbf{p},\omega,\omega_i) L_i(\mathbf{p},\omega_i) \cos(\mathbf{n},\omega_i)$

 $L_o(\boldsymbol{p},\omega) \approx 0 + 2\pi f(\boldsymbol{p},\omega,\omega_i) \left[L_e(\boldsymbol{p}',-\omega_i) + 2\pi f(\boldsymbol{p}',-\omega_i,\omega_j) L_i(\boldsymbol{p}',\omega_j) \cos(\boldsymbol{n}',\omega_j) \right] \cos(\boldsymbol{n},\omega_i)$

 $L_{o}(\boldsymbol{p},\omega) \approx 0 + 2\pi f(\boldsymbol{p},\omega,\omega_{i}) \left[0 + 2\pi f(\boldsymbol{p}',-\omega_{i},\omega_{j}) L_{i}(\boldsymbol{p}',\omega_{j}) \cos(\boldsymbol{n}',\omega_{j}) \right] \cos(\boldsymbol{n},\omega_{i})$

 $L_{o}(\boldsymbol{p},\omega) \approx 0 + 2\pi f(\boldsymbol{p},\omega,\omega_{i}) \left[0 + 2\pi f(\boldsymbol{p}',-\omega_{i},\omega_{j}) L_{i}(\boldsymbol{p}',\omega_{j}) \cos(\boldsymbol{n}',\omega_{j}) \right] \cos(\boldsymbol{n},\omega_{i})$

 $L_o(\boldsymbol{p},\omega) \approx 0 + 2\pi f(\boldsymbol{p},\omega,\omega_i) \left[0 + 2\pi f(\boldsymbol{p}',-\omega_i,\omega_j) L_o(\boldsymbol{p}'',-\omega_j) \cos(\boldsymbol{n}',\omega_j) \right] \cos(\boldsymbol{n},\omega_i)$

 $L_{o}(\boldsymbol{p},\omega) \approx 0 + 2\pi f(\boldsymbol{p},\omega,\omega_{i}) \left[0 + 2\pi f(\boldsymbol{p}',-\omega_{i},\omega_{j}) L_{e}(\boldsymbol{p}'',-\omega_{i}) \cos(\boldsymbol{n}',\omega_{j}) \right] \cos(\boldsymbol{n},\omega_{i})$

What's so naïve about this?

49

Surface form of LTE

Separating Direct And Indirect Illumination

CHALMERS

- So far we have sampled incoming light uniformly over the hemisphere. Why is that a bad idea?
- We want to shoot more samples where the function we are integrating is high!

CHALMERS

- So far we have sampled incoming light uniformly over the hemisphere. Why is that a bad idea?
- We want to shoot more samples where the function we are integrating is high!

Probability Density Function

- When evaluating the Rendering Equation, we do not know the function we want to integrate
 - Since it depends on the incoming light over the hemisphere
 - But we do know the BRDF, so we importance sample on that

$$L_o(\boldsymbol{p},\omega) = \int_{\Omega} f(\boldsymbol{p},\omega,\omega') L_i(\boldsymbol{p},\omega') \cos(\boldsymbol{n},\omega') \, d\omega'$$

67

CHALMERS

71

¹⁰Multiple Importance Sampling

Need to estimate:

 $\int f(x)g(x)dx$

Could Use:

$$0.5\left(\frac{f(X)g(X)}{p_f(X)} + \frac{f(Y)g(Y)}{p_g(Y)}\right)?$$

Need to estimate:

 $\int f(x)g(x)dx$

Could Use:

$$0.5\left(\frac{f(X)g(X)}{p_f(X)} + \frac{f(Y)g(Y)}{p_g(Y)}\right)?$$

Better (MIS): $0.5\left(\frac{f(X)g(X)}{0.5(p_f(X) + p_g(X))} + \frac{f(Y)g(Y)}{0.5(p_f(Y) + p_g(Y))}\right)$

Need to estimate:

 $\int f(x)g(x)dx$

Could Use:

$$0.5\left(\frac{f(X)g(X)}{p_f(X)} + \frac{f(Y)g(Y)}{p_g(Y)}\right)?$$

 $\frac{f(X)g(X)}{p_f(X) + p_g(X)} + \frac{f(Y)g(Y)}{p_f(Y) + p_g(Y)}$

Stratified Sampling

- Another standard variance reduction method
- When just choosing samples randomly over the domain, they may "clump" and take a long while to converge

It *will* converge to 0.5 after unlimited time.

But after four samples I still have prob=1/8 that the pixel will be considered all in shadow or completely unshadowed

Stratified Sampling

- Divide domain into "strata"
 - Don't sample one strata again until all others have been sampled once.

Stratified Sampling

- If we know how many samples we want to take, we can get good stratification from "jittering"
- If not, we want any sequence of samples to have good stratification. We can use a *Low Discrepancy Sequence*

Advanced Computer Graphics - Path Tracing

87

Are we done yet?

Pathtracing 3m

Pathtracing 3m

Bidirectional Pathtracing 3m

す

ত

Bidirectional Pathtracing

CHAI

MERS

Bidirectional Path Tracing

Pathtracing 3m

Pathtracing 3m

Bidirectional Pathtracing 3m

CHALMERS

Bidirectional Pathtracing 45SPP (~5min)

Advanced Computer Graphics - Path Tracing

CHALM

Are we done yet?

Bidirectional Pathtracing 30m

Bidirectional Pathtracing 30m

Metropolis Light Transport 30m

marches

0

0

CHALMERS

RECHNOLOGY

Bidirectional Path Tracing

microfacels

CHALMERS

CHNOLOGY

Metropolis Light Transport

CHALMERS

Bidirectional Path Tracing

CHALMERS

Metropolis Light Transport

M<

Advanced Computer Graphics - Path Tracing

10<u>0</u>

on microfacets

2 the microfresh

Further Reading

Matt Pharr Greg Humphreys

PHYSICALLY BASED RENDERING From Theory to Implementation

with a form

BUILD STATUS

Publishes.

(and in

Sufi Sharks

Restaura file

Manhorite Tile

Room is: 4115 Phone (each), 440 31-7221775 URg/chainers: in: Department of Computer Science and Engineering Obtimers: University of Technology S-412 90 (orderstan), SVEDEA

Nain research litterests. Studiov algorithms - buth MacAme and non residure - for hard and will thedows including studious in

Pathtracing Lab