LIGHT TRANSPORT

Advanced Computer Graphics 2017 Erik Sintorn

Before we start:

- Remember to choose a subject for your presentation soon.
- And your project.
- Student representatives:
- JOHAN BACKMAN
johback@student.chalmers.se
- KEVIN BJÖRKLUND kevinb@student.chalmers.se
- JONAS HULTÉN muct jonashu@student.chalmers.se
- HAMPUS LIDIN
- VICTOR OLAUSSON
lidin@student.chalmers.se
vicola@student.chalmers.se
- Come for a quick talk with me during recess.
- Muddy Cards!

Light Transport Simulation

- Rendering an image is a matter of "simulating" how light propagates through a virtual scene and lands on a virtual camera film.
- Many algorithms exist, and the best one depends on many factors.
- For a long time, Photon Mapping and Irradiance Caching were extremely popular.
- Trade correctness for speed.
- Will cover these only very briefly.

Photon Mapping

046

Irradiance Caching

out

Path Tracing

- Path tracing is an algorithm for rendering images.
- Introduced by James Kajiya in 1986 as a numerical solution to the Rendering Equation.
- The algorithm is convergent and unbiased.
- Has long been considered too noisy/slow to be used in industry.
- Today, almost all commercial renderers use some form of unbiased pathtracing (at least optionally).
- Pixar (for example) only switched completely very recently.
-Why the sudden popularity?

Mental Ray (photon mapping) 32s
iRay (path tracing) 32s

Mental Ray (photon mapping) 2m8s
iRay (path tracing) 2m8s
iRay (path tracing) ~1h

Mental Ray 15m, 100M Photons, FG 1.0

iRay (path tracing) 15m

- Immediate response
- Much easier to parallelize

Where does an image come from?

Pinhole Camera

Where does an image come from?

Pinhole Camera

Where does an image come from?

Pinhole Camera

Where does an image come from?

Pinhole Camera

Where does an image come from?

Pinhole Camera

Where does an image come from?

Pinhole Camera

Where does an image come from?

Light Transport Equation

Numerical Integration

Monte Carlo Integration

Monte Carlo Integration

Monte Carlo Integration

Monte Carlo Integration

Monte Carlo Integration

Monte Carlo Integration

Monte Carlo Integration

Monte Carlo Integration

Monte Carlo Integration

$$
L_{o}(\boldsymbol{p}, \omega)=E\left[L_{e}(\boldsymbol{p}, \omega)+\frac{1}{N} \sum_{i=0}^{N} \frac{f\left(\boldsymbol{p}, \omega, \omega_{i}\right) L_{i}\left(\boldsymbol{p}, \omega_{i}\right) \cos \left(\boldsymbol{n}, \omega_{i}\right)}{p\left(\omega_{i}\right)}\right]
$$

Monte Carlo Integration

Sample hemisphere uniformly :
$p\left(\omega_{i}\right)=\frac{1}{2 \pi}$

$$
L_{o}(\boldsymbol{p}, \omega)=E\left[L_{e}(\boldsymbol{p}, \omega)+\frac{1}{1} \sum_{i=0}^{1} \frac{f\left(\boldsymbol{p}, \omega, \omega_{i}\right) L_{i}\left(\boldsymbol{p}, \omega_{i}\right) \cos \left(\boldsymbol{n}, \omega_{i}\right)}{p\left(\omega_{i}\right)}\right]
$$

Monte Carlo Integration

Sample hemisphere uniformly :
$p\left(\omega_{i}\right)=\frac{1}{2 \pi}$

$$
L_{o}(\boldsymbol{p}, \omega)=E\left[L_{e}(\boldsymbol{p}, \omega)+\frac{f\left(\boldsymbol{p}, \omega, \omega_{i}\right) L_{i}\left(\boldsymbol{p}, \omega_{i}\right) \cos \left(\boldsymbol{n}, \omega_{i}\right)}{p\left(\omega_{i}\right)}\right]
$$

Monte Carlo Integration

Sample hemisphere uniformly :
$p\left(\omega_{i}\right)=\frac{1}{2 \pi}$

$$
L_{o}(\boldsymbol{p}, \omega)=E\left[L_{e}(\boldsymbol{p}, \omega)+2 \pi f\left(\boldsymbol{p}, \omega, \omega_{i}\right) L_{i}\left(\boldsymbol{p}, \omega_{i}\right) \cos \left(\boldsymbol{n}, \omega_{i}\right)\right]
$$

Naive Pathtracing

$$
L_{o}(p, \omega) \approx L_{e}(p, \omega)+2 \pi f\left(p, \omega, \omega_{i}\right) L_{i}\left(p, \omega_{i}\right) \cos \left(n, \omega_{i}\right)
$$

Naive Pathtracing

$$
L_{o}(p, \omega) \approx L_{e}(p, \omega)+2 \pi f\left(p, \omega, \omega_{i}\right) L_{i}\left(p, \omega_{i}\right) \cos \left(n, \omega_{i}\right)
$$

Naive Pathtracing

$$
L_{o}(p, \omega) \approx 0+2 \pi f\left(p, \omega, \omega_{i}\right) L_{i}\left(p, \omega_{i}\right) \cos \left(n, \omega_{i}\right)
$$

Naive Pathtracing

$$
L_{o}(\boldsymbol{p}, \omega) \approx 0+2 \pi f\left(p, \omega, \omega_{i}\right) L_{o}\left(p^{\prime},-\omega_{i}\right) \cos \left(n, \omega_{i}\right)
$$

Naive Pathtracing

$$
L_{o}(p, \omega) \approx 0+2 \pi f\left(p, \omega, \omega_{i}\right) L_{i}\left(p, \omega_{i}\right) \cos \left(n, \omega_{i}\right)
$$

Naive Pathtracing

$$
L_{o}(\boldsymbol{p}, \omega) \approx 0+2 \pi f\left(p, \omega, \omega_{i}\right)\left[L_{e}\left(p^{\prime},-\omega_{i}\right)+2 \pi f\left(p^{\prime},-\omega_{i}, \omega_{j}\right) L_{i}\left(p^{\prime}, \omega_{j}\right) \cos \left(n^{\prime}, \omega_{j}\right)\right] \cos \left(n, \omega_{i}\right)
$$

Naive Pathtracing

$$
L_{o}(\boldsymbol{p}, \omega) \approx 0+2 \pi f\left(p, \omega, \omega_{i}\right)\left[0+2 \pi f\left(p^{\prime},-\omega_{i}, \omega_{j}\right) L_{i}\left(p^{\prime}, \omega_{j}\right) \cos \left(n^{\prime}, \omega_{j}\right)\right] \cos \left(n, \omega_{i}\right)
$$

Naive Pathtracing

$$
L_{o}(\boldsymbol{p}, \omega) \approx 0+2 \pi f\left(p, \omega, \omega_{i}\right)\left[0+2 \pi f\left(p^{\prime},-\omega_{i}, \omega_{j}\right) L_{i}\left(p^{\prime}, \omega_{j}\right) \cos \left(n^{\prime}, \omega_{j}\right)\right] \cos \left(n, \omega_{i}\right)
$$

Naive Pathtracing

$$
L_{o}(\boldsymbol{p}, \omega) \approx 0+2 \pi f\left(p, \omega, \omega_{i}\right)\left[0+2 \pi f\left(p^{\prime},-\omega_{i}, \omega_{j}\right) L_{o}\left(p^{\prime \prime},-\omega_{j}\right) \cos \left(n^{\prime}, \omega_{j}\right)\right] \cos \left(n, \omega_{i}\right)
$$

Naive Pathtracing

$$
L_{o}(\boldsymbol{p}, \omega) \approx 0+2 \pi f\left(p, \omega, \omega_{i}\right)\left[0+2 \pi f\left(p^{\prime},-\omega_{i}, \omega_{j}\right) L_{e}\left(p^{\prime \prime},-\omega_{i}\right) \cos \left(n^{\prime}, \omega_{j}\right)\right] \cos \left(n, \omega_{i}\right)
$$

Naive Pathtracing

What's so naïve about this?

Surface form of LTE

$$
\begin{aligned}
& \begin{aligned}
& L_{0}\left(p, \omega_{0}\right)= \int_{\Omega} f\left(\omega_{0}, \omega_{i}\right) L_{i}\left(\omega_{i}\right) \cos \left(\theta_{i}\right) d \omega \\
&=\int_{A^{\prime}(\text { all visible surfaces })} f\left(\omega_{i}, \omega_{0}\right) L_{i}\left(\omega_{i}\right) \cos \left(\theta_{i}\right) \frac{\cos \theta^{\prime}}{r^{2}} d A \\
& \begin{aligned}
& d \omega=\frac{d A \cos \theta^{\prime}}{r^{2}}=\int_{A} f\left(p^{\prime \prime} \rightarrow p^{\prime} \rightarrow p\right) L\left(p^{\prime \prime} \rightarrow p^{\prime}\right) V\left(p^{\prime \prime} \rightarrow p^{\prime}\right) \\
& G\left(p^{\prime \prime} \leftrightarrow p^{\prime}\right) d A\left(p^{\prime \prime}\right)
\end{aligned}
\end{aligned} .
\end{aligned}
$$

$$
4=
$$

Separating Direct And Indirect Illumination

Importance Sampling

- So far we have sampled incoming light uniformly over the hemisphere. Why is that a bad idea?
- We want to shoot more samples where the function we are integrating is high!

Importance Sampling

- So far we have sampled incoming light uniformly over the hemisphere. Why is that a bad idea?
- We want to shoot more samples where the function we are integrating is high!

Probability Density Function

Importance Sampling

Monte Carlo Integration

$$
F_{N}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}
$$

Importance Sampling

Innortancesanning

$$
p(X)=\frac{2}{3}
$$

Monte Carlo Integration

$$
F_{N}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}
$$

$$
p(X)=\frac{1}{6}
$$

$$
p(X)= \begin{cases}\frac{1}{6} & 0<X<1 \\ \frac{2}{3} & 1<X<2 \\ \frac{1}{6} & 2<X<3\end{cases}
$$

Importance Sampling

Importance Sampling

$$
f(x)=x+0.1 \times \sin \left(x^{3} 17 \pi\right)
$$

$$
1\left\{\begin{array}{l}
p(x) \alpha x \Rightarrow p(x)=k \cdot x \\
\int_{0}^{1} p(x) d x=1 \Rightarrow p(x)=2 x \\
C D F: P(x)=\int_{0}^{x} p\left(x^{\prime}\right) \partial x^{\prime}=x^{2}
\end{array}\right.
$$

What is prob. of choosing $X_{i}<x$?

$$
C D F^{-1}: P^{-1}(P(x))=x \Rightarrow P^{-1}(x)=\sqrt{x}
$$

Which range $[0-X]$ should contain " x " of all samples?

$$
\begin{aligned}
& f(x)=x+0.1 x \sin \left(x^{3} 17 \pi\right) \\
& p^{\prime}(x) \alpha x \Rightarrow p(x)=k \cdot x \\
& \int_{0} p(x) d x=1 \Rightarrow p(x)=2 x \\
& C D F: P(x)=\int_{0}^{x} p\left(x^{\prime}\right) d x^{\prime}=x^{2} \\
& C D F^{-1}: P^{-1}(P(x))=x \Rightarrow P^{-1}(x) \\
& P^{-1}(0.1)=0,31
\end{aligned}
$$

What is prob. of choosing

$$
x_{i}<x \text { ? }
$$

$$
f(x)=x+0.1 x \sin \left(x^{3} 17 \pi\right)
$$

$$
\uparrow \quad p(x) \alpha x \Rightarrow p(x)=k \cdot x
$$

What is prob. of choosing $X_{i}<x$?
1

$$
\begin{aligned}
& C D F^{-1}: P^{-1}(P(x))=x \Rightarrow P^{-1}(x)=\sqrt{x} .
\end{aligned}
$$

$$
P^{-1}(0.2)=0.44
$$

Which range $[0-X]$ should contain ' x ' of all samples?

Importance Sampling

- When evaluating the Rendering Equation, we do not know the function we want to integrate
- Since it depends on the incoming light over the hemisphere
- But we do know the BRDF, so we importance sample on that

Importance sampling Blinn MF BRDF

$$
f\left(\omega_{0}, \omega_{i}\right)=\frac{F\left(\omega_{0}\right) G\left(\omega_{n}\right) D\left(\omega_{n}\right)}{4 \cos \theta_{0} \cos \theta_{i}}
$$

$D\left(\omega_{n}\right)=((n+2) / 2 \pi)\left(\cos \theta_{h}\right)^{n} \quad$ heed to sample ω_{n} (and find ω_{0} from that)
ϕ_{h} does not affect $D: \phi_{h}=2 \pi \xi_{2}$
PDF must be normalized: $D\left(\cos \theta_{h}\right)=(n+2)\left(\cos \theta_{h}\right)^{n}$
We know how to sample ω_{h} with PDF ~ $D\left(\omega_{h}\right)$ need PDF

$$
\begin{aligned}
& P_{h}\left(\cos \theta_{h}\right)=k D\left(\cos \theta_{h}\right) \\
& {\left[\int k D\left(\cos \theta_{h}\right)=1\right]} \\
& P_{h}\left(\cos \theta_{h}\right)=(n+1) \cos ^{n} \theta_{h}
\end{aligned}
$$

Recall: $\frac{d \omega_{h}}{d \omega_{i}}=\frac{1}{4 \cos \theta_{h}}$

$$
p\left(\theta_{i}\right)=\frac{p\left(\theta_{n}\right)}{4 \cos \theta_{n}} \quad p\left(\omega_{i}\right)=\frac{p\left(\theta_{i}\right)}{2 \pi}
$$

Power distribution in $\left.\cos \theta_{h}\right)$.

$$
\cos \theta_{h}=\sqrt[n+1]{\xi_{1}}
$$

Multiple Importance Sampling

Multiple Importance Sampling

Multiple Importance Sampling

$$
L_{o}(\boldsymbol{p}, \omega)=\int_{\Omega} f\left(\boldsymbol{p}, \omega, \omega^{\prime \prime}\right) L_{i}\left(\boldsymbol{p}, \omega^{\prime}\right) \cos \left(\boldsymbol{n}, \omega^{\prime}\right) d \omega^{\prime}
$$

Multiple Importance Sampling

10Multiple Importance Sampling

9
8

${ }_{10}$ Multiple Importance Sampling

9
8

${ }_{10}$ Multiple Importance Sampling

9
8
7
6
5
4
3
2
1
0

${ }_{10}$ Multiple Importance Sampling

Multiple Importance Sampling

Need to estimate:

$$
\int f(x) g(x) d x
$$

Could Use:

$$
0.5\left(\frac{f(X) g(X)}{p_{f}(X)}+\frac{f(Y) g(Y)}{p_{g}(Y)}\right) ?
$$

Multiple Importance Sampling

Need to estimate:

$$
\int f(x) g(x) d x
$$

Could Use:

$$
0.5\left(\frac{f(X) g(X)}{p_{f}(X)}+\frac{f(Y) g(Y)}{p_{g}(Y)}\right) ?
$$

Better (MIS):

$$
0.5\left(\frac{f(X) g(X)}{0.5\left(p_{f}(X)+p_{g}(X)\right)}+\frac{f(Y) g(Y)}{0.5\left(p_{f}(Y)+p_{g}(Y)\right)}\right)
$$

Multiple Importance Sampling

Need to estimate:

$$
\int f(x) g(x) d x
$$

Could Use:

$$
0.5\left(\frac{f(X) g(X)}{p_{f}(X)}+\frac{f(Y) g(Y)}{p_{g}(Y)}\right) ?
$$

$$
\begin{gathered}
\text { Better (MIS): } \\
\frac{f(X) g(X)}{p_{f}(X)+p_{g}(X)}+\frac{f(Y) g(Y)}{p_{f}(Y)+p_{g}(Y)}
\end{gathered}
$$

Multiple Importance Sampling

Stratified Sampling

- Another standard variance reduction method
- When just choosing samples randomly over the domain, they may "clump" and take a long while to converge

Stratified Sampling

- Divide domain into "strata"
- Don't sample one strata again until all others have been sampled once.

Stratified Sampling

- If we know how many samples we want to take, we can get good stratification from "jittering"
- If not, we want any sequence of samples to have good stratification. We can use a Low Discrepancy Sequence

Are we done yet?

Pathtracing 3m
Pathtracing 3m

Pathtracing

Bidirectional Pathtracing

Bidirectional Path Tracing

Pathtracing 75SPP ($\sim 5 \mathrm{~min}$)

Bidirectional Pathtracing 45SPP ($\sim 5 \mathrm{~min}$)

Are we done yet?

Metropolis Light Transport

Metropolis Light Transport

Metropolis Light Transport

Bidirectional Path Tracing

Metropolis Light Transport

Further Reading

Matt Pharr Greg Humphreys

PHYSICALLY BASED RENDERING

From Theory to Implementation
Second Edition

Advanced Global Illumination	

